
1 Intorduction

Over the last 15 years our group at the University of Michigan has been de-
veloping a general use global MHD code, BATS-R-US, and the Space Weather
Modeling Framework (SWMF) that couples domain models extending from the
Sun to planetary upper atmospheres and ionospheres. BATS-R-US and the
SWMF have been extensively used to simulate a broad range of space science
phenomena. Still there are many unmet challenges. There is a need to go
beyond ideal MHD. In the previous AISRP we have developed a new parallel
implicit Hall MHD solver for the 3D block-adaptive grid used in BATS-R-US.

In the current AISR project we are further developing the BATS-R-US code.
In the first year we have

• finished and published the Hall MHD scheme

• added an electron equation to the MHD equations

• added a multi-ion MHD equation module

• tested the empirical resistivity model by M. Kuznetsova

Below we will describe these developments in more detail.

1.1 Hall MHD equation

The Hall MHD equations have been successfully implemented into the BATS-R-
US code. It can be used with explicit and implicit time stepping, on Cartesian
and generalized block-adaptive grids and the code scales well to hundreds of pro-
cesssors. The details of the algorithm and a series of tests have been published
in the Journal of Computational Physics (G. Toth, Y. J. Ma, T. I. Gombosi,
2008, JCP, 227, 6967-6984).

The Hall MHD code has been used for a number of space physics runs, in-
cluding the reconnection of the magnetotail of the Earth, and the space plasma
environment around unmagnetized planets and moons. The magnetotail simu-
lations showed some fast quasi-periodic plasmoid formation that is not unlike
some of the observed features. The results are not conclusive, though, because
it is difficult to achieve a good enough spatial resolution and still finish the run
in a reasonable time. Modeling the non-magnetized planets and moons seems to
be an easier task. Here the Hall effect modifies the overall solution but it is not
confined to a small region. We have published a paper (3D global multi-Species
Hall-MHD simulation of the Cassini T9 flyby, Y. J. Ma et al, 2007, Geophysical
Research Letters, 34, L24S10). The results presented in this paper suggest that
the magnetic field measured by Cassini can be better reproduced when the Hall
term is included into the MHD equations.
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Figure 1: An example of a multifluid MHD result driven by PWOM outflow at
the inner boundary and solar wind at the outer boundary. Quantities shown
are the log of total number density and what percent of the number density is
composed of oxygen in the noon-midnight y = 0 plane

1.2 Two-fluid equation

The MHD equations can now be extended with an extra equation for the electron
pressure pe:

∂pe

∂t
+ (ue · ∇) pe +

5

3
pe∇ · ue = S(pe) (1)

where the electron velocity is either the same as the ion velocity or it can include
the Hall velocity so that ue = u −

j

/ (e ne). The right hand side S represents

arbitrary source terms.
This extra equation allows the ion and electron pressures/temperatures to be

different. We plan to use this new capability to model the electron temperature
in the solar corona that can be substantially different from the ion temperature,
and the observations typically measure the electron temperature rather than
the ion tempreature.

1.3 Multi-ion MHD equations

We have implemented a new algorithm for the multi-ion MHD equations. The
momentum equation for the ion fluid s is written as

∂ρsus

∂t
+ ∇ · (ρsusus + Ips) = ρs

qs

ms
(us − ue) × B + S(ρsus) (2)

where qs and ms are the charge and mass of one ion, respectively, and ue =
u+ − j/(e ne). Here u+ is the average ion speed weighted by charge rather than
mass density, e is the electron charge, and ne is the electron number density.
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The individual momentum equations cannot be written in conservation form.
To obtain the correct jump conditions across shock waves, we also solve the
total MHD equations in conservation form in addition to the ion equations.
After each time step the individual and total ion quantities are adjusted so that
they add up correctly.

We use a point-implicit evaluation for the right hand side to make the scheme
stable. A first order in time version of the scheme is

(ρsus)
n+1 = (ρsus)

n
− ∆t∇ · Fn + SM (ρn, ρun+1,Bn) + S(ρsus)

n (3)

where F contains the hydrodynamic fluxes, and SM is the right hand side of
equation (2) without S. Note that the magnetic field and densities are evaluated
at time level n. The multi-ion source term SM is linearized around the n-th
time step

Sn+1

M ≈ Sn
M +

∂SM

∂ρu
· (ρun+1

− ρun) (4)

where ρu is a vector of the individual momenta for all the ion fluids. For sake
of efficiency the Jacobian ∂SM/∂ρu is calculated analytically.

We have used the multi-fluid code to model the magnetosphere including the
oxygen outflow from the ionosphere. The outflow can be specified as a constant
flow with fixed densities and velocities for the two fluids, or we can use the
Polar Wind Outflow Model (PWOM) to provide these quantities at the inner
boundary of the magnetosphere model (BATS-R-US).

1.4 Evaluating the non-gyrotropic resistivity model

We have done systematic runs to evaluate the non-gyrotropic resistivity model.
We found that the periodicity and magnitude of the saw-tooth-like oscillations
depends on the density, velocity and magnetic field in the solar wind. However
it will require further studies to see how much the oscillations produced by the
non-gyrotropic resistivity model mimic reality.
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